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Abstract

In this paper, we propose a novel method for reconstruct-
ing the shape model of a non-rigid object. We represent the
non-rigid object as the union of rigid components, and ac-
quire range images of the object and motion of each compo-
nent while the object varies its shape. We acquire the range
images using one-shot scanning, and we use marker-based
motion capture for motion acquisition. Based on them, our
method performs registration of the range images and as-
signs a shape to each component. We propose the use of the
Pinhole-to-Projection Pyramid obtained from each range
image to non-iteratively solve the assignment task. The ef-
fectiveness of our method is demonstrated by applying it to
reconstruct the shape of a human hand.

1. Introduction

Active 3D sensors such as Microsoft Kinect have made
the capture of 3D scenes widely popular. Such active 3D
sensors project a light pattern onto the scene and capture
a range image. Due to recent advances in this �eld, it is
possible to capture a range image of a detailed 3D scene in
real time. Many applications have been proposed in various
�elds, such as user interfaces, shape modeling, and gesture
recognition.

For shape modeling, active 3D sensors are frequently
used to capture the detailed shape of a real object, but we
can only obtain a one-sided shape from a single frame of the
range image. As single range images cannot cover the en-
tire object, multiple range images are captured from various
viewpoints to construct the whole shape of the object. When
we capture static objects, we can collect many range im-
ages that are then integrated to reconstruct the whole shape.
However, it becomes dif�cult to integrate the range images
of non-rigid objects, as their shapes vary during the observa-
tion. Many studies have attempted to reconstruct non-rigid

objects from range images. Some of them [1, 2, 3] intro-
duced a template shape model that describes the variation in
the 3D shape, and then �tted this model to the range images
as an optimization problem. Although other works [4, 7, 13]
automatically estimated the object's deformation withouta
template shape model, they did introduce a complex energy
function that was optimized in an iterative manner. Such
optimization approaches are powerful, but can encounter
computational problems by falling into local minima and
are time-consuming.

In this paper, we propose a novel approach for integrat-
ing multiple range images in order to reconstruct a non-rigid
object. Our contributions are as follows:

� Our target is a broader subset of non-rigid objects that
are the union of multiple rigid components, which cor-
responds to Boolean operations used for solid model-
ing in the �eld of computer graphics. We do not re-
strict the subject to either an articulated object or in-
dependently moving rigid objects. As this representa-
tion permits components to overlap, the reconstructed
shape can be seamless around the joins.

� We propose a novel method using the Pinhole-to-
Projection Pyramid (PPP) to reconstruct the shape of
rigid components by utilizing volumetric information
extracted from the range image. This is quite ef�-
cient for extracting the shape of one component from
the range images and removing the other components'
shapes, as there is no need for optimization. As far
as we are aware, no other method utilizes the PPP for
non-rigid shape reconstruction.

� We use a single-pass algorithm, which has a lower
computational overhead and is more stable than other
iterative optimization approaches.

The proposed method can be applied widely, as it does not
require speci�c prior knowledge about the subject, except
for the motion of the rigid components. More speci�cally,
the method requires the number of components and their
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Figure 1. Reconstructed shape of human hand. The proposed method reconstructs a posable model consisting of multiple rigid components.
The whole shape is represented as the union of the components' shapes in various postures. The same components are used for each posture,
but in a different alignment.

rigid motion during range image acquisition. As an exam-
ple, we demonstrate the modeling of a human hand that has
18 rigid components. Figure1 shows the results from our
model, which reconstructed a real human hand. The rigid
motion of each component is easily acquired, but not lim-
ited, by putting some visual markers on each component.

2. Related work

2.1. Capture the shape of an object at one instant

Naive stereo captures images of an object from different
viewpoints, �nds correspondence points between the im-
ages, and calculates the 3D positions of the points on the
surface using triangulation. In order to overcome the dif-
�culty and instability of �nding the correspondence, active
stereo substitutes one of the cameras for a projector, which
projects structured light. Structured light allows dense and
reliable correspondences to be found, so active stereo en-
ables us to accurately capture the object's shape as a point-
cloud, even for textureless and non-convex objects. This
means that active stereo �nds correspondence points by act-
ing on the object.

Meanwhile, the shape-from-silhouette (SFS) method
does not require explicit correspondences among images.
This causes the reconstructed shape to be rough, but has
the advantage that we can reconstruct the shape as a vol-
ume, which is represented as a set of voxels, without �nding
the correspondence points. Thus, SFS avoids the problem
of �nding the explicit correspondence by simply extracting
implicit correspondences among the contours of the silhou-
ettes. Space carving re�nes these correspondences based on
photo-consistency.

2.2. Capture the shape of a rigid object over time

We can only obtain a one-sided shape of an object from a
single frame of the range image. As the range image cannot
cover the entire object, multiple range images are captured
from various viewpoints, and these are performed registra-

tion to construct the object's whole shape. The relative mo-
tion between the viewpoints of the range images is required
to perform the registration.

One common technique involves placing some markers
on the object. Using marker-based motion capture, multiple
viewpoints can measure their 3D position over time, allow-
ing the rigid transformation at each instant to be estimated.
By acting slightly on the object, it is reliable and stable to
estimate the motion.

Meanwhile, Iterative Closest Point (ICP) [5] is a com-
mon method that estimates the rigid motion from sequential
range images acquired over time. This method iteratively
�nds correspondences between the point-clouds, each of
which is a set of 3D points obtained from a range image,
and minimizes the distance between them by transforming
one to the other. This iteration will converge to the trans-
formation between the range images, allowing the motion
to be calculated. As this only requires the range images, we
can estimate the motion passively.

2.3. Capture the shape of a nonrigid object over
time

The integration of observations over time is also effec-
tive in SFS when the subject is non-rigid. Cheunget al.
[6] proposed a method of reconstructing the shape of an ar-
ticulated object from silhouette images obtained over time.
First, they proposed a temporal form of SFS for single rigid
object with unknown motion. This method estimated the
rigid motion of the object over time from Colored Surface
Points (CSPs) that were acquired using stereo, and aligned
all of the images based on the rigid motion captured at the
same instant to obtain a re�ned visual hull. Second, they ex-
tended this method to reconstruct articulated objects, which
are a set of rigidly moving parts connected to each other at
certain joints. The method iteratively solves the problem
of correctly segmenting the CSPs to each part of the object
and estimating the shape and motion of the individual parts.
As a result, the method reconstructs the shape of each part



separately. Although this method is also applicable to space
carving, the reconstructed shape and estimated motion can
be rough for textureless and non-convex objects.

Many studies have attempted to integrate range images
over time in order to reconstruct an articulated object. The
problem of integrating range images over time consists of
two main tasks: estimating the motion of each component
and assigning a shape to each component from observa-
tions.

Allen et al. [1, 2] used markers and a template model
to solve these problems. Markers and template models pro-
vide clues about the motion and assignment of parts, re-
spectively. The given template model is �tted to the scan
data by minimizing an error function. Anguelovet al. [3]
used multiple scan data for various postures and people to
build a data-driven template model of human body. Their
model accounts for changes in posture and differences in
shape between humans. To build the model, they manu-
ally placed 4-10 markers on each range image to provide
clues to the motion, and made dense correspondences be-
tween range images by minimizing a cost function. They
extracted clues for the assignment of shapes from the vari-
ety of postures in the dataset.

There has also been other research into the integration
of range images over time without the use of a template
model and markers. Pekelnyet al. [10] proposed a method
of reconstructing an articulated object from a sequence of
range images. They assumed that a rough assignment is
given in the �rst frame, and estimated the motion and as-
signment for other range images based on ICP. Changet al.
[4] also proposed global registration for a sequence of range
images of an articulated object. They automatically and
simultaneously integrated range images to reconstruct the
model without user-placed correspondences and segmenta-
tion. They achieved this goal by optimizing both the align-
ment of the range images and the articulated structure of the
model. Huanget al. [7] and Wandet al. [13] proposed auto-
matic non-rigid registration for range images. Both studies
also optimized correspondences and non-rigid deformations
among range images.

2.4. Our strategy

Many previous methods adopted an optimization ap-
proach for estimating correspondences. Once the corre-
spondences between the range images have been estimated,
they include clues to solve both the estimation of each com-
ponent's motion and the assignment of a shape to each com-
ponent. Therefore, recent methods [4, 7, 13] naturally ex-
tended the optimization approach to simultaneously solve
both tasks. Regardless of whether markers are used, most
methods formulate the assignment task as a problem of
�nding correspondences. As for many optimization prob-
lems, this is solved in an iterative manner. Such optimiza-

tion approaches are powerful, but can encounter computa-
tional problems by falling into local minima and are time-
consuming.

The approach of �nding correspondences is similar to
that of naive stereo. Meanwhile, as in naive SFS, there
are other ways to integrate range images than �nding cor-
respondences across time. Inspired by SFS across time [6],
we revisit the assignment task by supposing that reliable
motion can be obtained by marker-based motion capture.
We only consider the assignment task, and do not establish
explicit correspondences between range images over time.
We assign a shape for each component by utilizing volu-
metric information derived from range images. As in SFS,
this does not require explicit correspondences. As this ap-
proach is straightforward, we do not need to follow the opti-
mization approach. This means that our method has a lower
computational cost and provides more stable results if we
can acquire reliable motion.

3. Pinhole-to-Projection Pyramid subtraction

3.1. Overview

We propose a novel method whereby the shape for each
component is extracted from a set of range images that ob-
serve a non-rigid object over time. Here, we suppose that
the non-rigid object can be described as the union of rigid
components, and we can acquire the rigid motion of each
component during the observation. The shape of each com-
ponent is reconstructed according to the given rigid motion,
and the whole shape is then described as their union. A set
of fewer components derives a simpler description, but can
give a coarser approximation.

We perform the registration of the point-clouds of the
range images based on the given rigid motion of each com-
ponent. As the point-clouds include the shapes captured
from other components, the registration result has many ar-
tifacts. We remove such artifacts by utilizing volumetric
information derived from the range images. We call this
Pinhole-to-Projection Pyramid (PPP). It is guaranteed that
there is no object in the PPPs. We also perform registration
for PPPs with respect to each component, and subtract them
from the registration result to remove the artifacts. The re-
maining is the reconstructed shape for each component.

3.2. Artifacts in registration for nonrigid object

Let us suppose that range images for timet = 1 ; � � � ; T
are given. The non-rigid object consists ofS components,
and their motion is captured att = 1 ; � � � ; T . The sensor
coordinate system of the range scanner and the motion cap-
ture are identical, and we denote it as� e. Here, we also
introduce object-centered coordinate systems,� s, for every
components(:= 1 ; � � � ; S). We de�ne the captured motion
of components at timet as the rigid transformation matrix
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Figure 2. Registration for the range images across time. The
shapes from other components cause artifacts.

W s(t) from � e to � s .
From each range image, we can obtain a point-cloud

in � e. The point-cloud att consists of the pointspe
t;n ,

n = 1 ; � � � ; N t . In order to reconstruct the shape of compo-
nents, we need to perform registration by transforming the
points from� e into � s according to the following equation.

ps
t;n = W s(t)pe

t;n (1)

When components is rigid, the points that captureds form
a consistent surface in� s, even ifs is captured in different
positions in� e over time. Although the points acquired att
form a one-sided shape fors, we can obtain the whole shape
by accumulating points over time.

If the object consists of one rigid component (i.e., the
object is rigid), registration gives us the whole shape of the
object. However, when the object consists of multiple com-
ponents, the point-clouds also consist of points on their sur-
face. In this case, the registration process is insuf�cientto
obtain the individual shape of each component.

Let us consider what will happen if we perform regis-
tration on the point-clouds. As discussed above, the points
captured fors form a consistent surface in� s. However,
point-clouds also include points captured for other compo-
nents, and the registration process will also transform them
from � e into � s. Generally, other components will have a
different motion tos, or the components could be treated
as a single rigid object. Therefore, the other components
take different positions in� s over time. This means that
the points captured from other components form an incon-
sistent surface in� s , causing the artifacts shown in Fig.2.

3.3. Removing artifacts by subtraction

There are two ways to solve this problem: segment
point-clouds into their components before registration, or
remove artifacts from the registration results. Previous
methods [4, 10] took the former approach, but we take the
latter.

In order to remove the artifacts, we consider a similar
method to SFS across time [6]. Originally, SFS recon-
structs the shape of the object based on silhouettes from
many viewpoints. Each silhouette has volumetric informa-
tion as there is no object outside the silhouette. By back-
projecting the region outside the silhouette, we can obtain
the partial volume outside the object. SFS subtracts the vol-
ume from the space to extract the shape of the object. We
can utilize this volume to remove the artifacts. In� s , the
surface ofs consistently stays inside the silhouette of the
object. However, artifacts from other components can lie
outside the silhouette over time. According to this idea, we
can remove the points that are projected outside the silhou-
ettes. However, this additionally requires many silhouettes
of the object over time, and can compromise the advantages
of active stereo in terms of reliability.

3.4. PinholetoProjection Pyramid derived from
range image

In this paper, we propose the PPP method for extracting
such volumetric information from range images and using
it to remove the artifacts. We utilize the simple fact that
“the camera can observe the surface of the object.” When
we capture a range image, the surface of the object exists
at a certain distance, which corresponds to the pixel values
of the range image, from the camera. In active stereo, the
camera observes the structured light on the surface, allow-
ing us to calculate the distance between the camera and the
projection. According to this, we can determine that there is
no object between the camera and the visible surface of the
object, because the camera can observe the surface. Strictly,
this volume forms the PPP, of which the apex is the pinhole
of the camera and the base is the projection on the surface of
the object. We illustrate this PPP in Fig.3. The volumetric
information is aggregated over time to remove the artifacts.
In other words, we subtract PPPs from point-clouds to ex-
tract the shape of the component.

3.5. Algorithm

We now explain our algorithm for removing the artifacts.
Figure 4 illustrates this algorithm. We assume that a se-
quence of range images,I t , and the motion of the compo-
nentsW s(t) are captured, wheret(:= 1 ; � � � ; T ) is time
ands(:= 1 ; � � � ; S) is the index of a component. We ob-
tain a set of 3D pointspe

t;n from each range image, where
n(:= 1 ; � � � ; N t ) is the index of points captured att. For
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Figure 4. Overview of our algorithm.

each components, we �rst perform the registration by trans-
forming every point-cloudpe

t;n (8t; n ) into � s based on the
motion ofs, W s(t), using eq.1. We denote these points as
ps

t;n . They include the consistent surface of the component
s as well as inconsistent artifacts from other components.
Next, we detect the artifacts by utilizing PPPs. In order to
detect whether a point exists in the PPPs or not, we project
each pointps

t;n onto each range imageI t 0
, and compare the

depth of the projected point and the depth value ofI (t0).
We assume that the camera is calibrated and the calibration
matrix A is known. We can calculate the position(u; v) of
the projected point on the range image, and its depthw is
given by eq.2.

(u; v; w)T � AW s(t0)� 1ps
t;n = AW s(t0)� 1W s(t)pe

t;n
(2)

If w < I t 0
(u; v) � � , we consider this point to be an arti-

fact. Here,� denotes a margin for measurement error. The
artifacts can be inside some, but not all, of the PPPs. Mean-

while, the actual surface of the components is always out-
side the PPPs if the component is rigid. Therefore, we com-
pare the depth in everyI t 0

for each point, and count how
many times the point lies inside the PPP. Ideally, we only
extract the points that have never been detected as artifacts.
However, the range images can include some outliers, and
they can accidentally cause the actual surface of the compo-
nent to be removed. For practical application, therefore, we
set a threshold for the count asC and use this to determine
the artifacts.

After removing the artifacts, we obtain a point-cloud of
s as a set ofps

t;n . By integrating the range images obtained
from a suf�cient number of viewpoints, the points are sam-
pled densely enough from the entire component, and we can
easily reconstruct the surface from them using traditional
methods.

We perform the above procedure for everys, then we
separately reconstruct the shape of each component. We
represent the whole shape of the non-rigid object att by
transforming them into� e by W s(t)� 1 and taking their
union.

In previous methods [4, 10], each point has been classi-
�ed into a single component. In contrast, our algorithm al-
lows some points to exist in multiple components. In other
words, whereas the previous methods partition the points,
our algorithm allows the components to overlap. There-
fore, when we reconstruct the whole shape, some parts re-
main inside other components. Although such a situation is
physically impossible, it is effective for representing com-
plex shapes, similar to the useful application of Boolean
operations for solid modeling in computer graphics. This
overlapping of components also provides another advantage
in that the results will be stable even if we use more than
enough components to represent the non-rigid object; how-
ever, this may make the motion capture troublesome.

4. Implementation

4.1. Oneshot scan for capturing range images

Although we considered the range images to be given for
non-rigid objects, many traditional active stereo methods,
such as laser range scanners and space encoding, are not
applicable to dynamic scenes, as they require multiple im-
ages overtime to capture a range image. However, there are
several methods [8, 12] for recovering a 3D dynamic scene
from one shot. We implement a similar method to capture
a non-rigid object. In order to capture a more reliable and
accurate shape, we project De Bruijn spaced grids from a
single projector, and observe them with multiple synchro-
nized cameras.



4.2. Markerbased motion capture

In order to measure the rigid motion of each component,
we implement marker-based motion capture. We place
small markers on every component, and observe them using
the synchronized cameras. The 3D positions of the markers
are calculated from their positions on the images by trian-
gulation. We manually input the positions of the markers
on the �rst frames, and automatically track their positions
based on pixel intensity in the remaining frames. Although
the tracking occasionally fails when we use many markers,
we are able to manually check the tracking result and �x
the failures. We calculate the rigid transformationW s(t)
from a set of 3D marker positions. In order to capture the
rigid motion, we need to place at least three markers on each
component.

4.3. Interpolation of range image for ef�cient re
moval

One-shot scans enable us to obtain point-clouds, but the
points are not suf�cient to cover all pixels of the image as
the 3D position is only provided at the cross-points of the
grid. This means that only the pixels at the cross-points have
a depth value, and many pixels in the range image have no
depth, even if the pixels capture the surface of the object.
Although we can apply our algorithm to such a sparse range
image, it makes the removal of artifacts less ef�cient. Thus,
we interpolate the depth values of the range image to con-
struct a dense PPP.

Speci�cally, we reconstruct a triangular mesh for the
point-cloud and project it onto the range image to interpo-
late the depth. We utilize each point's De Bruijn code for
reliable meshing, and only connect points that are close in
3D space and have adjacent codes. We set the depth to0 for
pixels outside the mesh and do not use them for detecting
artifacts.

4.4. Surface reconstruction

After detecting the artifacts, we reconstruct the surface
from the remaining points. When we observe the object in
a variety of postures from a suf�cient number of viewpoints,
the remaining points give a good approximation of the sur-
face without holes. We can estimate an initial polyhedron
from the points by simply applying the Marching Cubes al-
gorithm [9] in suf�ciently high resolution, and we �t this
to the points in a nearest-neighbor manner. Thus, we can
easily acquire the mesh for each component.

4.5. Experimental equipment

We now present the equipment used for this implemen-
tation (see also Fig.5). The observation area is a cubic space
measuring about 250 mm in each direction, and we set 39
synchronized cameras approximately 1200 mm from the

Projector
Camera

Black Light

Figure 5. Experimental equipment. This enables us to capture a
range image and motion simultaneously using a one-shot scanand
marker-based motion capture, respectively.

area. Camera calibration is performed by utilizing Zhang's
method [14] and the factorization method [11]. We also set
one projector. This equipment enables us to perform one-
shot scanning and marker-based motion capture simultane-
ously. For the one-shot scanning, we project De Bruijn pat-
terns onto the subject and observe it with 10 of the cameras
at 7.5 fps in UXGA (1600� 1200) resolution. For the mo-
tion capture, we use 1-mm-square �uorescent markers and
measure their 3D position under black light. All 39 cam-
eras are used to observe the markers during the scanning in
order to keep them to be tracked. We can acquire 10 range
images for the subject, and the 3D position of the markers
to estimate the rigid transformation of each component.

5. Experiments

We now experimentally demonstrate the application of
our method by modeling a human hand.

5.1. Inputs

We consider the human hand to consist of 18 rigid com-
ponents: two parts for the thumb, three parts for each of the
four �ngers, three parts for the palm, and one part for the
wrist. Each part of the thumb and �ngers corresponds to the
phalanges. We placed four markers on each component, as
shown in Fig.6. The subject assumed a variety of hand pos-
tures during the measurement. We captured range images
and measured the 3D position of markers in 290 postures.
Figure7 shows the captured images, the point-clouds ob-
tained from them, and interpolated range images for six of
the postures. We could acquire about 1000-3000 points for
each frame, giving a total of around 620,000 points.

5.2. Reconstructed shape for the components

We applied our method and acquired the shape of each
component. For each of the 18 components, we performed



Figure 7. Examples of captured shapes. Top: Images capturedfor the one-shot scan in various postures. Middle: Reconstructed 3D
point-cloud on the cross-points of the grid. Bottom: Reconstructed mesh for depth interpolation.
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Figure 6. We positioned four markers on the two parts of the
thumb, three parts of the four �ngers, three parts of the palm, and
the wrist.

registration based on its motion, and removed artifacts
based on the PPPs. We captured images with ten cameras
for 290 postures, so the PPP is obtained from each of 2,900
range images. We used all of them to detect artifacts, with
� = 3mm, and removed the points detected as artifacts more
than once (C = 1 ). We also applied the Marching Cubes
algorithm [9] with a 3 mm voxel size to generate the initial
polyhedron and �tted it to the point-cloud.

Figure8 shows the reconstructed surface of the compo-
nents. Many adjacent phalanges share some parts around
their joints, and the proximal phalanges protrude into the
palm. The components of the palm largely overlap, but have
different shapes to one another. Intuitively, the proximal
phalanges seem to have super�uous parts. These overlaps
distinguish our method from most previous studies.

Figure 8. Reconstructed shapes of individual components.

5.3. Recovered whole shape

We transformed the reconstructed components according
to the recorded motion and recovered the whole shape of the
hand during the measurement (see attached video Fig.9).
For comparison, we used the same motion in Fig.7 to recon-
struct the whole shape, and rendered the shape from almost
the same viewpoint (Fig.1). The upper row shows the whole
shape, and the lower shows the individual components in
different colors.

Although the distal and proximal phalanges of the thumb
undoubtedly have small artifacts, the union of the com-



Figure 9. Partial sequence of measurement. Top left: captured
image. Top right: reconstructed mesh. Bottom left: transformed
components. Bottom right: whole shape.

ponents almost describes the natural shape of the hand in
various postures. Although the one-shot scan only recov-
ered a limited surface in each frame, as shown in Fig.7, our
method complements the shape by integrating other frames.
The super�uous parts of each component mainly stay inside
the hand, and they contribute to the seamless connection of
the components. In particular, the three components of the
palm, which largely overlap each other, describe non-rigid
deformation in various postures.

6. Conclusion and future work

In this paper, we proposed a novel method to reconstruct
the shape of a non-rigid object. We assumed that the non-
rigid object could be represented as the union of rigid com-
ponents. As input, we acquired range images of the ob-
ject and the motion of each component while the object
varied its shape. In our implementation, we used a one-
shot scan to acquire range images and marker-based motion
capture for motion acquisition. Based on these range im-
ages and motions, our method �rst performs registration for
the point-clouds. As the point-clouds consist of the shape
of multiple components, the registration result contains ar-
tifacts. In order to detect and remove them, we utilized the
Pinhole-to-Projection Pyramid obtained from the range im-
ages. We extracted the component surfaces, which are con-
sistently inside the object over time, from the registration
result by subtracting the PPPs. Finally, the non-rigid object
was represented as the union of the components, and this
was aligned with their motion at each time.

Many areas require further investigation. In this paper,
we tried to apply our method to the reconstruction of a hu-
man hand, and the results seemed reasonable. However, we
did not quantitatively evaluate the output. First, we need
to evaluate the difference between the captured range im-
ages and the whole reconstructed shape in various scenes.
We also need to carefully select the subject for con�den-
tial evaluation, but this is still under consideration. Further-

more, there are some possibilities for extending our method
to simultaneously estimate the motion and assign the shape
of each component. As for previous methods, we will be
able to embed our method into an iterative procedure, which
will make it more practical.
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